CASE STUDY
ELIZABETH CITY REGIONAL AIRPORT
APRON REHABILITATION

October 2016
Dion J. Viventi, PE
Tim Gruebel, PE
PROJECT OVERVIEW

- Location
- Owners
- Users
- Sponsors
- Funding Partners
- Design Team
PROJECT OVERVIEW

- Elizabeth City, NC
- Elizabeth City - Pasquotank County Airport Authority
- General Aviation/Military
- Sponsors
- Funding Partners
- Design Team
DESIGN TEAM

- Prime Consultant: Parrish and Partners
- NCDOT Services: Atkins - Survey and Geotechnical Coordination
 - MA Engineering - Survey
 - Terracon - Geotechnical
- Sub Consultant: Hyman and Robey - Drainage, Sedimentation & Erosion Control
EXISTING CONDITIONS

- Fixed Boundaries on all sides
- 25,250 SY
- Poor Pavement Condition
- Varying Pavement Sections
 - Asphalt: 2” - 10”
 - Stone Base: 6.5” - 7”
 - Subgrade: Poorly Graded Sand to Fat Clay
- Drainage Conditions
 - Standing water
 - Undersized Drainage System
 - Not Enough Inlets
- Utilities
 - FAA VORTAC Cables
DESIGN PARAMETERS

- Fleet Mix - Cessna to C-130
- Fueling Operations
- 20 Year Design Life
- Layout Revision to New Design Standards
- Revised Drainage and Grading
- Additional Considerations
 - LED Lighting
 - Flush Mount Fire Hydrant
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Gross Wt. (lbs)</th>
<th>Annual Departures</th>
<th>% Annual Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Skylane-1-82</td>
<td>3,110</td>
<td>177</td>
<td>2.00</td>
</tr>
<tr>
<td>2</td>
<td>Seneca-II</td>
<td>4,570</td>
<td>1,007</td>
<td>2.00</td>
</tr>
<tr>
<td>3</td>
<td>KingAir-B-100</td>
<td>11,500</td>
<td>220</td>
<td>2.00</td>
</tr>
<tr>
<td>4</td>
<td>Citation-V</td>
<td>16,500</td>
<td>121</td>
<td>2.00</td>
</tr>
<tr>
<td>5</td>
<td>Falcon-50</td>
<td>38,800</td>
<td>97</td>
<td>2.00</td>
</tr>
<tr>
<td>6</td>
<td>Gulfstream-G-IV</td>
<td>75,000</td>
<td>83</td>
<td>2.00</td>
</tr>
<tr>
<td>7</td>
<td>Sngl Whl-75</td>
<td>75,000</td>
<td>20</td>
<td>2.00</td>
</tr>
<tr>
<td>8</td>
<td>Sngl Whl-45</td>
<td>45,000</td>
<td>20</td>
<td>2.00</td>
</tr>
<tr>
<td>9</td>
<td>C-130</td>
<td>155,000</td>
<td>20</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Notes:
* Modelled as single wheel main gear at 45,000 lbs
** Modelled as single wheel main gear at 75,000 lbs
ALTERNATIVES ANALYSIS

- **Alternative A: Asphalt Overlay**
 - Milling the existing asphalt to scarify the surface in order to avert slippage of new asphalt.
 - Application of tack coat.
 - Placement of two (2) 2.5” lifts of new asphalt (P-401) for a total new asphalt thickness of 5”.
ALTERNATIVES ANALYSIS

- Alternative B: PCC White Topping
 - Placing a new 9.5” thick Portland Cement Concrete (PCC) surface over the existing asphalt surface.
ALTERNATIVES ANALYSIS

- **Alternative C: New PCC with Cement Treated Base**
 - Removal of existing pavement and base.
 - Placing a new 5” thick Cement Treated Base (CTB).
 - Placing a new 9.5” thick Portland Cement Concrete (PCC) surface.
ALTERNATIVES ANALYSIS

- Alternative D: New PCC with FDR Base
 - Uniformly pulverizing and blending the existing asphalt, base, and subgrade to a depth of approximately 18” using specialty equipment.
 - Removal of Excess Material and Grade Adjustments to Leave 8” Uniform FDR Base
 - Application of Portland Cement and blending with pulverized material and water.
 - Placing a new 9” thick Portland Cement Concrete (PCC) surface.
ALTERNATIVES ANALYSIS

- Criteria - Scoring
 - Scale 1 to 5 (Highest Score Wins)
 - Alternative D Provided Greatest Flexibility
 - Reduced Need for New Aggregates (Very High local Cost)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Alt-A</th>
<th>Alt-B</th>
<th>Alt-C</th>
<th>Alt-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longevity</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Fuel Resistance</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Compatibility with Adjacent Grades</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Tolerance to Grade Corrections</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Cost</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Sustainability/Rcycled Material</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total Score</td>
<td>19</td>
<td>17</td>
<td>22</td>
<td>25</td>
</tr>
</tbody>
</table>
CONSTRUCTION TEAM

- CA and Inspection: Parrish and Partners
- Prime Contractor: Barnhill Contractors
 - FDR: Slurry Pavers
 - Paving: McCarthy Improvement
 - Electrical: B&M Electrical Contractors
 - Concrete Vendor: CRMP Inc.
CONSTRUCTION PROCESS

Phasing
Pulverization
Grading & Drainage
Cement Treatment, Compaction, & Rolling
Concrete Paving
Pavement Marking
CONSTRUCTION PHASING

Phase I
CONSTRUCTION PHASING

Phase I
CONSTRUCTION PHASING

Phases II & III
CONSTRUCTION PHASING

Phase II

Phase III
PULVERIZATION

- Varying Depth Based on New Grades
- Removal of Excess material
- Undercut of Unsuitable and Backfill Sand
GRADING & DRAINAGE

- Whole New System Configuration
- 87,500 LB Load Requirement for Inlets & Grates
- Class V RCP
GRADING & DRAINAGE
CEMENT TREATMENT, COMPACTATION, & ROLLING

- FAA P-301 Modified (Modulus of 250,000 PSI)
 - Greg Dean, Stan Bland, Andrew Johnson
- The minimum compressive strength of soaked specimens shall be 300 PSI at 7 days, and the maximum compressive strength shall be 400 PSI at 7 days. The samples' compressive strength should increase with both age and increase in cement content.
- Initial Mix Designs at 4%, 5%, and 6% Cement Content
 - Compressive Too High
- Final Mix Design - 3% Cement Content
- Huge Cost Savings!
- 2 Hour Limit to Work Base
CONCRETE PAVING

- 650 PSI Flexural Strength
- Typical 0.5% to 1.5% Cross Slope
- Slip Form Paving of Lanes
- Hand Forming of Irregular Areas
CONCRETE PAVING
REINFORCEMENT

- W5.5 WWF for Irregular Shaped Slabs
- 1” Dowels Along Perimeter
- Dowel baskets pins had to be hammer drilled in due to rigidity of FDR base
LED LIGHTING

- Musco Green Generation LED
- First use in NC Aviation
- Brighter - Less Wattage
- Low Maintenance 100,000 Hour Bulb Life
LED LIGHTING
QUALITY CONTROL & QUALITY ASSURANCE

- **Trimat Testing (QA)**
 - FDR P-301 Nuclear Gage with Pills Tested per NCDOT Spec
 - PCC P-501 Cured beams
 - Subgrade P-152
QUALITY CONTROL & QUALITY ASSURANCE
CONSTRUCTION ADMIN / INSPECTIONS

- Owners Resident Project Representative
 - Darrick Olinger
- Owners Engineer
 - Tim Gruebel, PE
SAVING S

- Cement Content
- Aggregate
- On & Offsite Hauling
BEFORE & AFTER
CRITICAL ISSUES

- Tenant Coordination Throughout Design & Construction
- Coordination with Users and FAA
- Contractor Engineer Relationship
 - Allow Flexibility in Phasing
 - Communication
- Evaluation of Material Suppliers
 - Single Cement Provider
 - No Aggregate Sources Nearby
- QA Survey Verification
- Staging and Dust Control Near Aircraft
- Provide for Contingencies Such as Undercut and Subgrade Replacement
QUESTIONS?

- Thank You - Blue Skies!