Full-Depth Reclamation Symposium

The Missing Link in Pavement Management
October 24, 2015

Presented by:
Steve Lander, P.E.
KERCHER ENGINEERING, INC.
Agenda

• Critical Pavement Management System Issues
• Pavement Condition Surveys (PCS)
• Pavement Management Software
• Summary
• Questions
Opening Questions

• Why are we here?
• What is the condition of your roadway network?
• Is it getting better?
• Is your pavement management program adequately funded?
• Are your current practices working?
• Are you selecting the right projects to maximize performance with the available resources?
Challenges/Problem Statement

1. Inadequate Roadway Funding
 - Does Council Fully Understand?
 - Are Other Departments Getting Funding?

2. Forced into “Worst-First” Project Selection
 - Spending a Lot of Money in a Small Area

3. Catching Up Is Impossible
 - Float a Bond?
Solution/Missing Link

1. Perform a Regular PCS
2. Predictive Modelling
 - Leveraging the PCS Data
 - Providing a Defensible Case
3. FHWA 3R’s
 - Repair Strategies (When, Where, What Type?)
 - Multi-Constraint Optimization
 • Doing things at the right time

© Kercher Engineering, Inc.
Pavement Condition Surveys (PCS)
Pavement Condition Surveys

- Measures the deterioration produced by use, environment and material aging
 - Data is Analyzed to Generate Decision-making Information
 - Condition → Repairs → Costs → Priorities
 - Collect only the Data that is required:
 - More Cost-effective
 - Higher Quality (less to focus on)

Goal: Quality Data, Not Quantity!!!
Pavement Condition Surveys

• A Good Evaluation requires a “SOLID” Understanding and Field Training

• Comprehensive Rating System
 – Must reasonably reflect the true level of deterioration
 – Distress Information:
 • Type
 • Severity
 • Extent

© Kercher Engineering, Inc.
PCS Methods

• Visual Surveys (Windshield)
 – LTPP
 – ITRE
 – Paser
 – Internal Rating System

• ASTM D6433 (Physical Measurement)

• Automated Data Collection (Van)
PCS Frequency

FHWA Recommends:

Every 2 to 3 Years
Why Is A Quality Pavement Management System So Critical?
Many Variables

- Functional Class
- Truck Traffic
- Speed Limits
- Pavement Types
- Soils
- Drainage
- Pavement Condition
- Repair Alternatives
Many Constraints/Challenges

Performance Goals

Needs (Backlog)

Other Assets

Funding Sources

© Kercher Engineering, Inc.
Timing is Very Critical!!!
Using The Right Mix of Fixes
Thin “Overlays”

NAPA Report - IS 135

• Range of Life – 4 years to 17 years
• Median Life Expectancy – 7 to 10 years

© Kercher Engineering, Inc.
Pavement Treatments
Utilize the Entire Tool Box

There is a most Cost-effective Treatment
for every combination of Distresses

Crack Sealing Patching Microsurfacing

Ultra-Thin Bonded Overlay Cold In-Place Recycling Full-Depth Reclamation

© Kercher Engineering, Inc.
Analytics Matter!!!

Maximize Your Infrastructure Investment

Doing More With Less
Pavement Management Software
Most Pavement Management Software

• Limited Flexibility
 – Generic Treatments
 – Generic Decision Trees
 – Generic Performance Models
 – Generic Reports

• Ranking Prioritization
 – Not Integer Optimization
 – 30% to 60% Less Effective than Optimization

• Single Composite Index (e.g. PCI)
What is the Most Cost-effective Treatment?

Crack Seal & Micro

Deep Patching

Thin Rehab

A Single Index would most likely Select a Surface Coat

3 Different Conditions with a PCI = 70-75

Transverse Cracks 30’ to 50’ c-c and Raveling

Localized Severe Alligator Cracks

Corrugations

Pavement Age

Very Good

Preservation

Rehab

Reconstruction

Very Poor

New

Old

© Kercher Engineering, Inc.
Structural Deterioration
Individual/Combined Indices & Treatment

Individual Index
- Alligator Cracking
- Edge Cracking
- Potholes/Patching

Combined Index
- Structural Index

Treatment
- Structural Repair

- No Maintenance
- Patching (IF MS/HS)
- Rehab
- Reconstruction/FDR/CIR

© Kercher Engineering, Inc.
Environmental Deterioration
Individual/Combined Indices & Treatment

Individual Index
- Transverse Cracking
- Block Cracking
- Raveling

Combined Index

Treatment
- No Maintenance
- Crack Seal (MS/HS)
- Preventive Maintenance
- Rehab
- Thick Rehab/CIR

© Kercher Engineering, Inc.
Pavement Management Software

AgileAssets Pavement Analyst
AgileAssets Pavement Analyst™ Software

- The Leading Pavement and Asset Management Software
- Predictive Modelling (“What If Scenarios”)
- Multi-Constraint Integer Optimization
- Tremendous Flexibility
 - VDOT> 57,000 centerline miles
 - Rehoboth Beach, DE - 19 centerline miles

© Kercher Engineering, Inc.
AgileAssets Pavement Analyst Software

- Flexibility
 - Inventory Data
 - Condition Data
 - Pavement Types
 - Treatment Types
 - Decision Trees
 - Performance Models
 - Integrate with other Assets
Optimization

Ensuring that the Utilization of Resources is Maximized to achieve Desired Goals
“Benefit” Calculation

Benefit of Applying Treatment = (A.B.C.) * Traffic Factor * ???

??? - Other Factors

Delaying Treatment

• Less “Real” Improvement
• Lower Performance
• Less Benefit!!!

Decreased Performance Created by “Delaying”
Goal Of Optimization
Provide the Maximum Amount of Benefit

- **Optimal Timing**
 - Excellent Rt. Maintenance
 - $150,000
 - Sweet Spot
 - Optimal Timing
- **Optimal Timing**
 - Good Preventive Maintenance
 - $480,000
 - Sweet Spot
 - Optimal Timing
- **Optimal Timing**
 - Fair Minor Rehabilitation
 - $30,000
 - Sweet Spot
 - Sweet Spot
- **Optimal Timing**
 - Poor Major Rehabilitation
 - $250,000
 - Sweet Spot
 - Sweet Spot
- **Optimal Timing**
 - Very Poor Reconstruction
 - $480,000
 - Sweet Spot
 - Optimal Timing

© Kercher Engineering, Inc.
Multi-Constraint Optimized Scenario Analysis

Objective: Minimize Cost

Minimize Cost

Network Overall PCI > 70

Constraint: Performance Measures (PCI)

Constraint No. 1
Network PCI

Constraint No. 2
Network Level SI
By Classification

Local
SI ≥ 65

Collectors
SI ≥ 68

Arterials
SI ≥ 75

Arterials
0% w/
PCI < 40

Collectors
10% w/
PCI < 40

Local
20% w/
PCI < 30

Collectors
10% w/
PCI < 40

Local
0% w/
PCI < 40

Arterials
20% w/
PCI < 40

Collectors
10% w/
PCI < 40

Local
0% w/
PCI < 40

Arterials
20% w/
PCI < 40

Collectors
10% w/
PCI < 40

Local
0% w/
PCI < 40

Arterials
20% w/
PCI < 40

Collectors
10% w/
PCI < 40

Local
0% w/
PCI < 40

© Kercher Engineering, Inc.
Examples
Buena Vista, VA
56 Miles of Streets

Comparison:
Worst First vs. Optimization
Investment Level: $600K/Year
Pavement Condition Index (PCI)

$600K/Year

PCI = 54

PCI = 46

Year

PCI

© Kercher Engineering, Inc.
Percent of Network Treated: Worst First

$600K/Year

Worst First %

Optimized 10 Year Treated Length = 27 Lane Miles
Percent of Network Treated: Optimized

$600K/Year

Optimized %

Optimized 10 Year Treated Length = 76 Lane Miles

© Kercher Engineering, Inc.
A Medium-Sized County
900 Miles of Streets

Comparison:
Reconstruction vs. FDR

Investment Level: $10M/Year
Many Subdivision Streets are 8-15 year age range and needing attention soon
Overall Condition Index (PCI)
The Same Annual Budget

PCI = 75.4
PCI = 72.3
Backlog - Utilizing Traditional Reconstruction vs. FDR
The Same Annual Budget

Traditional Reconstruction

<table>
<thead>
<tr>
<th>Year</th>
<th>Recon</th>
<th>Thick Rehab</th>
<th>Thin Rehab</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FDR

<table>
<thead>
<tr>
<th>Year</th>
<th>FDR</th>
<th>Thick Rehab</th>
<th>Thin Rehab</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Backlog Cost Total Comparison
The Same Annual Budget

$35 Million
The Optimization Approach

• Why the Drastic Reduction in Backlog?

 – Optimization selects the most-cost effective (optimal) set of projects to meet the Objective subject to One or More Constraints!

 – Many more pavements are treated due to the software selecting the optimal mix of fixes!
The Missing Link

• Regular PCS (Every 2 to 3 Years)

• Predictive Modeling
 – Defensible Case

• Project Selection
 – Multi-Constraint Integer Optimization
 • FHWA 3R’s
Steve Lander, P.E.
KERCHER ENGINEERING, INC.
813-767-5090
slander@kercherei.com
www.kercherei.com